等差数列定义式 概念是怎样的(等差数列一般式)

微雨 218
左侧宽880
左侧宽880

等差数列的定义:一般地,如果一个数列从第二项起,每一项与它的前一项之差都等于一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d来表示。定义可以用公式表达为:a(n+1)-an=d(式中n为正整数,d为常数)。(文章内容来源于网络,仅供参考)

等差数列的定义式介绍

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。公差常用字母d表示。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。

等差数列的基本性质

1,公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。

2,公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd。

3,若{an}{bn}为等差数列,则{ an ±bn }与{kan +bn}(k、b为非零常数)也是等差数列。

4,对任何m、n ,在等差数列中有:an = am + (n-m)dm、n∈N+),特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性。

5、一般地,当m+n=p+qm,n,p,q∈N+)时,am+an=ap+aq。

6,公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差)。

7,下表成等差数列且公差为m的项ak.ak+m.ak+2m.....(k,m∈N+)组成公差为md的等差数列。

8,在等差数列中,从第二项起,每一项(有穷数列末项除外)都是它前后两项的等差中项。

9,当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。

等差数列前n项和公式S的基本性质

1,数列为等差数列的充要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数)。

2,在等差数列中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S-S =a。

3,若数列为等差数列,则S ,S -S ,S -S 仍然成等差数列,公差为等差数列。

4,若两个等差数列的前n项和分别是S 、T (n为奇数)。

标签: 等差数列定义式 概念是怎样的